Uses of Class
com.leumanuel.woozydata.model.DataFrame
Packages that use DataFrame
Package
Description
-
Uses of DataFrame in com.leumanuel.woozydata
Methods in com.leumanuel.woozydata that return DataFrameModifier and TypeMethodDescriptionAnalyzes a specific column for statistical measures and patterns.Woozydata.clean()Performs automatic data cleaning on the current DataFrame.Converts column data types according to the specified type map.Woozydata.correlation(String... columns) Woozydata.detectOutliers(String timeCol, String valueCol) Removes duplicate rows based on specified columns.Woozydata.dropNa()Removes rows containing null values from the DataFrame.Fills null values in all columns with a specified value.Woozydata.fillNaColumns(Object value, String... columns) Loads data from a CSV file into a DataFrame.Loads data from a JSON file into a DataFrame.Connects to MongoDB and loads data from a collection into a DataFrame.Loads data from an Excel file into a DataFrame.Woozydata.interpolate(String method, String... columns) Woozydata.logisticReg(String xCol, String yCol) Reshapes data from wide to long format.Woozydata.missingAnalysis()Woozydata.multipleReg(String[] xCols, String yCol) Normalizes specified columns to range [0,1].Woozydata.outlierAnalysis(String... columns) Performs quick comprehensive analysis of specified columns.Creates a pivot table from the DataFrame.Woozydata.polynomialReg(String xCol, String yCol, int degree) Woozydata.quickAnalysis(String... columns) Woozydata.reshape(int rows, int cols) Woozydata.rollingWindow(String column, int window, String func) Woozydata.sample(int n) Woozydata.seasonalAdjust(String timeCol, String valueCol) Woozydata.standardize(String... columns) Standardizes specified columns using z-score normalization.Woozydata.timeAnalysis(String dateCol, String valueCol) Methods in com.leumanuel.woozydata with parameters of type DataFrame -
Uses of DataFrame in com.leumanuel.woozydata.controller
Methods in com.leumanuel.woozydata.controller that return DataFrameModifier and TypeMethodDescriptionPerforms basic analysis on a specified column.Bins continuous data into discrete intervals.DataController.clean()Performs general data cleaning operations.Concatenates current DataFrame with another DataFrame.Converts column types according to the provided type map.DataController.correlation(String... columns) Calculates correlation matrix for specified columns.Decomposes time series into components.DataController.detectOutliers(String timeCol, String valueCol) Detects outliers in time series data.Removes duplicate rows based on specified columns.DataController.dropNa()Removes rows with null values.Creates dummy/indicator variables.Fills null values with a specified value.DataController.fillNaColumns(Object value, String... columns) Fills null values in specified columns with a given value.Forecasts future values using time series analysis.Reads data from a CSV file and creates a DataFrame.Reads data from a JSON file and creates a DataFrame.Reads data from a MongoDB collection and creates a DataFrame.Reads data from an Excel (XLSX) file and creates a DataFrame.Groups DataFrame by specified columns.DataController.interpolate(String method, String... columns) Interpolates missing values using specified method.DataController.logisticReg(String xCol, String yCol) Performs logistic regression.Unpivots DataFrame from wide to long format.Merges current DataFrame with another DataFrame.DataController.missingAnalysis()Analyzes missing values in the DataFrame.DataController.multipleReg(String[] xCols, String yCol) Performs multiple linear regression.Normalizes specified columns to [0,1] range.DataController.outlierAnalysis(String... columns) Identifies and analyzes outliers in specified columns.Creates a pivot table from the DataFrame.DataController.polynomialReg(String xCol, String yCol, int degree) Performs polynomial regression.DataController.quickAnalysis(String... columns) Performs quick exploratory data analysis on specified columns.DataController.reshape(int rows, int cols) Reshapes the DataFrame to specified dimensions.DataController.rollingWindow(String column, int window, String func) Applies function over rolling window.DataController.sample(int n) Creates a random sample of rows from the DataFrame.DataController.seasonalAdjust(String timeCol, String valueCol) Performs seasonal adjustment on time series.Selects specified columns from DataFrame.Sorts DataFrame by specified columns.DataController.standardize(String... columns) Standardizes specified columns (z-score normalization).DataController.timeAnalysis(String dateCol, String valueCol) Performs time-based analysis on a datetime column and corresponding value column.Methods in com.leumanuel.woozydata.controller with parameters of type DataFrame -
Uses of DataFrame in com.leumanuel.woozydata.model
Methods in com.leumanuel.woozydata.model that return DataFrameModifier and TypeMethodDescriptionDataFrame.clean()Performs automatic data cleaning operations.DataFrame.dropDupes()Removes duplicate rows from the DataFrame.DataFrame.dropNull()Removes rows containing null values.Fills null values with a specified value.Fills null values in specified columns.DataFrame.fixTypes()Automatically converts data types based on content.Ranks (sorts) the DataFrame based on specified columns.Creates a new DataFrame containing only the specified columns. -
Uses of DataFrame in com.leumanuel.woozydata.repository
Methods in com.leumanuel.woozydata.repository that return DataFrameModifier and TypeMethodDescriptionMongoDbConnector.readCollection(String collectionName) Reads a MongoDB collection into a DataFrame. -
Uses of DataFrame in com.leumanuel.woozydata.service
Methods in com.leumanuel.woozydata.service that return DataFrameModifier and TypeMethodDescriptionAnalyzes a specified column in the DataFrame and calculates basic statistical measures.Applies a function to a column of the DataFrame.Converts columns to specified data types.Performs comprehensive data cleaning including removing nulls, duplicates, and filling remaining nulls.Concatenates two DataFrames either vertically or horizontally.Converts column data types according to the provided type map.DataAnalysisService.correlation(DataFrame df) Performs correlation analysis between numeric columns.Decomposes time series into trend, seasonal, and residual components.TimeSeriesAnalysisService.detectTimeSeriesOutliers(DataFrame df, String timeCol, String valueCol) Detects outliers in time series data using IQR method.DataCleaningService.dropDuplicates(DataFrame df, String... columns) Removes duplicate rows from the DataFrame based on specified columns.Removes all rows containing missing values from the DataFrame.Replaces all missing values in the DataFrame with a specified value.DataCleaningService.fillNaColumns(DataFrame df, Object value, String... columns) Replaces missing values in specified columns with a given value.Generates forecasts for future time periods.Groups DataFrame by specified columns and calculates aggregate statistics.DataCleaningService.interpolate(DataFrame df, String method, String... columns) Interpolates missing values in specified columns using various methods.Creates a boolean mask indicating missing values in the DataFrame.Joins two DataFrames based on matching column values.RegressionService.logisticRegression(DataFrame df, String xCol, String yCol) Performs logistic regression analysis for binary classification.Unpivots DataFrame from wide to long format.Merges two DataFrames based on matching columns.AdvancedAnalysisService.missingAnalysis(DataFrame df) Analyzes missing values in all columns of the DataFrame.RegressionService.multipleRegression(DataFrame df, String[] xCols, String yCol) Performs multiple linear regression analysis.Normalizes specified numeric columns to range [0,1].Creates a boolean mask indicating non-missing values in the DataFrame.AdvancedAnalysisService.outlierAnalysis(DataFrame df, String... columns) Analyzes outliers in specified numeric columns using both Z-score and IQR methods.DataStatisticsService.pivot(DataFrame df, String index, String columns, String values, String aggFunc) Creates a pivot table from the DataFrame data.RegressionService.polynomialRegression(DataFrame df, String xCol, String yCol, int degree) Performs polynomial regression analysis.Replaces all occurrences of a specific value with a new value throughout the DataFrame.Reshapes DataFrame into specified dimensions.Creates a random sample of specified size from the DataFrame.TimeSeriesAnalysisService.seasonalAdjustment(DataFrame df, String timeCol, String valueCol) Removes seasonal component from time series.Selects specified columns from the DataFrame.Sorts DataFrame by specified columns in ascending order.Sorts DataFrame by specified columns.DataCleaningService.standardize(DataFrame df, String... columns) Standardizes specified numeric columns using z-score normalization (x - mean) / std.AdvancedAnalysisService.timeAnalysis(DataFrame df, String dateCol, String valueCol) Performs time series analysis on a DataFrame with date and value columns.DataAnalysisService.timeSeriesAnalysis(DataFrame df, String timeColumn, String valueColumn, int windowSize) Performs time series analysis.Transforms values in a specified column using a provided function.Methods in com.leumanuel.woozydata.service that return types with arguments of type DataFrameModifier and TypeMethodDescriptionDataExportService.createAnalysisReport(DataFrame df) Creates a standardized analysis report with multiple metrics.Groups DataFrame by specified columns.Methods in com.leumanuel.woozydata.service with parameters of type DataFrameModifier and TypeMethodDescriptionAnalyzes a specified column in the DataFrame and calculates basic statistical measures.Performs ANOVA test on multiple columns.Applies a function to a column of the DataFrame.Converts columns to specified data types.doubleCalculates the arithmetic mean (average) of values in a specified column.doubleDataAnalysisService.calculateCoefficientOfVariation(DataFrame dataFrame, String column) Calculates the coefficient of variation (CV) for a specified column.doubleDataStatisticsService.calculateCovariance(DataFrame df, String col1, String col2) Calculates covariance between two numeric columns.DataStatisticsService.calculateFrequency(DataFrame df, String column) Calculates frequency distribution of values in a column.doubleDataStatisticsService.calculateIQR(DataFrame df, String column) Calculates Interquartile Range (IQR) of a numeric column.doubleDataStatisticsService.calculateKurtosis(DataFrame df, String column) Calculates kurtosis of a numeric column.doubleDataAnalysisService.calculateMean(DataFrame dataFrame, String column) Calculates the arithmetic mean (average) of numeric values in a specified column.doubleDataAnalysisService.calculateMedian(DataFrame dataFrame, String column) Calculates the median value of a specified column.DataAnalysisService.calculateMode(DataFrame dataFrame, String column) Calculates the mode (most frequent value) of a specified column.DataAnalysisService.calculateMultipleMode(DataFrame dataFrame, String column) Calculates multiple modes if they exist in the specified column.doubleRegressionService.calculatePearsonCorrelation(DataFrame dataFrame, String column1, String column2) Calculates Pearson correlation coefficient between two columns.doubleDataAnalysisService.calculatePopulationStandardDeviation(DataFrame dataFrame, String column) Calculates the population standard deviation of a specified column.doubleDataStatisticsService.calculateQuantile(DataFrame df, String column, double q) Calculates specified quantile of a numeric column.doubleRegressionService.calculateRSquared(DataFrame df, String xCol, String yCol) Calculates R-squared (coefficient of determination) for linear regression.doubleDataStatisticsService.calculateSkewness(DataFrame df, String column) Calculates skewness of a numeric column.doubleDataAnalysisService.calculateStandardDeviation(DataFrame dataFrame, String column) Calculates the standard deviation of a specified column.doubleDataAnalysisService.calculateVariance(DataFrame dataFrame, String column) Calculates the variance of a specified column.StatisticalService.chiSquareTest(DataFrame df, String col1, String col2) Performs chi-square test for independence.Performs comprehensive data cleaning including removing nulls, duplicates, and filling remaining nulls.Concatenates two DataFrames either vertically or horizontally.Converts column data types according to the provided type map.DataAnalysisService.correlation(DataFrame df) Performs correlation analysis between numeric columns.DataExportService.createAnalysisReport(DataFrame df) Creates a standardized analysis report with multiple metrics.voidDataExportService.customExport(DataFrame df, List<String> metrics, String filePath) Custom export with user-selected metrics.Decomposes time series into trend, seasonal, and residual components.Generates comprehensive descriptive statistics for numeric columns.TimeSeriesAnalysisService.detectTimeSeriesOutliers(DataFrame df, String timeCol, String valueCol) Detects outliers in time series data using IQR method.DataCleaningService.dropDuplicates(DataFrame df, String... columns) Removes duplicate rows from the DataFrame based on specified columns.Removes all rows containing missing values from the DataFrame.voidDataExportService.exportToCSV(DataFrame df, String filePath) Exports DataFrame content to a CSV (Comma-Separated Values) file.voidDataExportService.exportToExcel(DataFrame df, String filePath) Exports DataFrame content to a Excel file.voidDataExportService.exportToHTML(DataFrame df, String filePath) Exports DataFrame content to a HTML file.voidDataExportService.exportToJSON(DataFrame df, String filePath) Exports DataFrame content to a JSON (JavaScript Object Notation) file.voidDataExportService.exportToLatex(DataFrame df, String filePath) Exports DataFrame content to a Latex file.Replaces all missing values in the DataFrame with a specified value.DataCleaningService.fillNaColumns(DataFrame df, Object value, String... columns) Replaces missing values in specified columns with a given value.Generates forecasts for future time periods.AdvancedAnalysisService.fullReport(DataFrame df, String... columns) Generates a comprehensive statistical report for specified columns.double[]DataStatisticsService.getColumnValues(DataFrame df, String column) Gets numeric values from a specified column.DataAnalysisService.getDispersionStatistics(DataFrame dataFrame, String column) Generates a summary of dispersion statistics for a specified column.DataAnalysisService.getFrequencyDistribution(DataFrame dataFrame, String column) Gets the frequency distribution of values in a specified column.Groups DataFrame by specified columns.Groups DataFrame by specified columns and calculates aggregate statistics.DataCleaningService.interpolate(DataFrame df, String method, String... columns) Interpolates missing values in specified columns using various methods.Creates a boolean mask indicating missing values in the DataFrame.Joins two DataFrames based on matching column values.RegressionService.logisticRegression(DataFrame df, String xCol, String yCol) Performs logistic regression analysis for binary classification.DataStatisticsService.mannWhitney(DataFrame df, String col1, String col2) Performs Mann-Whitney U test between two columns.Unpivots DataFrame from wide to long format.Merges two DataFrames based on matching columns.AdvancedAnalysisService.missingAnalysis(DataFrame df) Analyzes missing values in all columns of the DataFrame.RegressionService.multipleRegression(DataFrame df, String[] xCols, String yCol) Performs multiple linear regression analysis.Normalizes specified numeric columns to range [0,1].Creates a boolean mask indicating non-missing values in the DataFrame.AdvancedAnalysisService.outlierAnalysis(DataFrame df, String... columns) Analyzes outliers in specified numeric columns using both Z-score and IQR methods.DataStatisticsService.pivot(DataFrame df, String index, String columns, String values, String aggFunc) Creates a pivot table from the DataFrame data.RegressionService.polynomialRegression(DataFrame df, String xCol, String yCol, int degree) Performs polynomial regression analysis.Replaces all occurrences of a specific value with a new value throughout the DataFrame.Reshapes DataFrame into specified dimensions.Creates a random sample of specified size from the DataFrame.TimeSeriesAnalysisService.seasonalAdjustment(DataFrame df, String timeCol, String valueCol) Removes seasonal component from time series.Selects specified columns from the DataFrame.StatisticalService.shapiroWilkTest(DataFrame df, String column) Performs Shapiro-Wilk test for normality on a numeric column.double[]RegressionService.simpleLinearRegression(DataFrame dataFrame, String xColumn, String yColumn) Performs simple linear regression between two columns.Sorts DataFrame by specified columns in ascending order.Sorts DataFrame by specified columns.DataCleaningService.standardize(DataFrame df, String... columns) Standardizes specified numeric columns using z-score normalization (x - mean) / std.Calculates statistical measures for a specified column.Calculates basic statistics for a specified column.doubleCalculates the sum of all values in a specified column.AdvancedAnalysisService.timeAnalysis(DataFrame df, String dateCol, String valueCol) Performs time series analysis on a DataFrame with date and value columns.DataAnalysisService.timeSeriesAnalysis(DataFrame df, String timeColumn, String valueColumn, int windowSize) Performs time series analysis.Transforms values in a specified column using a provided function.Performs t-test between two columns.Method parameters in com.leumanuel.woozydata.service with type arguments of type DataFrameModifier and TypeMethodDescriptionvoidDataExportService.exportToPowerBI(Map<String, DataFrame> results, String filePath) Exports all analysis results to a single Excel file for PowerBI. -
Uses of DataFrame in com.leumanuel.woozydata.util
Methods in com.leumanuel.woozydata.util that return DataFrameModifier and TypeMethodDescriptionstatic DataFrameDataTransformUtil.createMetadata(DataFrame df) Creates metadata DataFrame describing the structure of input DataFrame.static DataFrameDataTransformUtil.formatForPowerBI(DataFrame df) Formats DataFrame data for PowerBI compatibility.static DataFrameReads a CSV file and converts it to a DataFrame.static DataFrameReads a JSON file and converts it to a DataFrame.static DataFrameReads an Excel file and converts it to a DataFrame.Methods in com.leumanuel.woozydata.util with parameters of type DataFrameModifier and TypeMethodDescriptionstatic DataFrameDataTransformUtil.createMetadata(DataFrame df) Creates metadata DataFrame describing the structure of input DataFrame.static voidDataExporter.exportToCSV(DataFrame dataFrame, String filePath) Exports DataFrame data to a CSV file.static voidDataExporter.exportToJSON(DataFrame dataFrame, String filePath) Exports DataFrame data to a JSON file.static DataFrameDataTransformUtil.formatForPowerBI(DataFrame df) Formats DataFrame data for PowerBI compatibility.